Corning® SMF-28® Ultra Optical Fiber

Product Information

CORNING

How to Order
Contact your sales

representative, or call

the Optical Fiber Customer Service Department:

attenuation, and quantity

when ordering.

Ph: 1-607-248-2000 (U.S. and Canada) +44-1244-525-320 (Europe) Email: cofic@corning.com Please specify the fiber type,

Corning® SMF-28® Ultra optical fiber is an ITU-T Recommendation G.652.D compliant optical fiber with Corning's enhanced low-loss and bend fiber technologies. This full-spectrum fiber has bend performance that exceeds the ITU-T Recommendation G.657.A1 standard and still splices the same as the installed base of standard single-mode fibers such as SMF-28e+ fiber. SMF-28 Ultra fiber offers industry-leading specifications for attenuation, macrobend loss, and polarization mode dispersion values, which provide a solid foundation for new network deployments as well as upgrades to existing networks. Since Corning brought the first fiber to market more than 40 years ago, Corning's leadership in single-mode fiber innovation has been unparalleled.

Optical Specifications

Maximum Attenuation

Wavelength	Maximum Value*
(nm)	(dB/km)
1310	≤ 0.32
1383**	≤ 0.32
1490	≤ 0.21
1550	≤ 0.18
1625	≤ 0.20

^{*} Alternate attenuation offerings available upon request.
** Attenuation values at this wavelength represent posthydrogen aging performance.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
10	1	1550	≤ 0.50
10	1	1625	≤ 1.5
15	10	1550	≤ 0.05
15	10	1625	≤ 0.30
25	100	1310, 1550, 1625	≤ 0.01

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_c)

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode-Field Diameter

Wavelength	MFD
(nm)	(µm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm·km)]
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): $S_0 \leq$ 0.092 ps/(nm²•km)

Polarization Mode Dispersion (PMD)

	value (ps/√km)
PMD Link Design Value	≤ 0.04*
Maximum Individual Fiber PMI	0.1 ≤ 0.1

*Complies with IEC 60794-3: 2001, Section 5.5, Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_Q). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Dimensional Specifications

Glass Geometry Fiber Curl ≥ 4.0 m radius of curvature Cladding Diameter 125.0 ± 0.7 μm Core-Clad Concentricity ≤ 0.5 μm Cladding Non-Circularity ≤ 0.7%

Coating Geometry	
Coating Diameter	242 ± 5 μm
Coating-Cladding Concentricity	< 12 µm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

^{*}Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa).*

Length

Fiber lengths available up to 63.0 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	8.2 µm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (N _{eff})	1310 nm: 1.4676 1550 nm: 1.4682
Fatigue Resistance Parameter (N _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3N) Wet, 14-day room temperature: 0.6 lbs. (3N)
Rayleigh Backscatter	
Coefficient	1310 nm: -77 dB
(for 1 ns Pulse Width)	1550 nm: -82 dB

^{*}Higher proof test levels available.